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Preface

Essentials of Business Analytics is designed to introduce the concept of business analytics 
to undergraduate and graduate students. This textbook contains one of the first collections 
of materials that are essential to the growing field of business analytics. In Chapter 1 we 
present an overview of business analytics and our approach to the material in this text-
book. In simple terms, business analytics helps business professionals make better deci-
sions based on data. We discuss models for summarizing, visualizing, and understanding 
useful information from historical data in Chapters 2 through 6. Chapter 7 covers the use of 
spreadsheets for examining data and building decision models. In Chapters 8 through 10 we 
discuss optimization models to help decision makers choose the best decision based on the 
available data. Chapter 10 presents material that some may consider more advanced forms 
of optimization (nonlinear optimization models), although these models are extremely use-
ful and widely applicable to many business situations. In any case, some instructors may 
choose to omit covering Chapter 10. In Chapter 11 we introduce the concept of simulation 
models for understanding the effect of uncertainty on decisions. Chapter 12 is an overview 
of decision analysis approaches for incorporating a decision maker’s views about risk into 
decision making. In Appendix A we present optional material for students who need to 
learn the basics of using Microsoft Excel. The use of databases and manipulating data in 
Microsoft Access is discussed in Appendix B.

This textbook can be used by students who have previously taken a course on basic 
statistical methods as well as students who have not had a prior course in statistics. This 
textbook introduces basic statistical concepts in enough detail to support their use in busi-
ness analytics tools. For the student who has not had a prior statistics course, these concepts 
are sufficient to prepare the student for more advanced business analytics methods. For 
students who have had a previous statistics class, the material will provide a good review. 
All statistical concepts contained in this textbook are presented from a business analytics 
perspective using practical business examples. For those instructors who wish to skip the 
introductory statistics material, Chapters 2 and 4 can be considered optional.

  Features and Pedagogy
The style and format of this textbook is based on the other classic textbooks written by the 
Anderson, Sweeney, and Williams (ASW) team. Some of the specific features that we use 
in this textbook are listed below.

● Integration of Microsoft Excel: Excel has been thoroughly integrated throughout 
this textbook. For many methodologies, we provide instructions for how to perform 
calculations both by hand and with Excel. In other cases where realistic models 
are practical only with the use of a spreadsheet, we focus on the use of Excel to 
describe the methods to be used.

● Use of Excel 2013: The material presented for Excel in this textbook is fully com-
patible with Excel 2013. In most cases, Excel 2013 can be considered a relatively 
minor update from previous Excel versions as it relates to business analytics. 
However, the data visualization abilities of Excel have been greatly enhanced in 
Excel 2013. It is much easier to create, modify and analyze charts in Excel 2013. 
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Recognizing that many students and instructors may not have access to Excel 2013 
at this time, we also provide instructions for using previous versions of Excel when-
ever possible.

● Use of Analytics Solver Platform and XLMiner: This textbook incorporates the 
use of two very powerful Microsoft Excel Add-ins: Analytics Solver Platform and 
XLMiner, both created by Frontline Systems. Analytics Solver Platform provides 
additional optimization and simulation features for Excel. XLMiner incorporates 
sophisticated data mining algorithms into Excel and allows for additional data vi-
sualization and data exploration. In most chapters we place the use of Analytics 
Solver Platform and XLMiner in the chapter appendix so that the instructor can 
choose whether or not to cover this material. However, because these tools are es-
sential to performing simulation and data mining methods, we integrate XLMiner 
throughout Chapter 6 on data mining and we utilize Analytics Solver Platform in 
Sections 11.3 and 11.4 for simulation.

● Notes and Comments: At the end of many sections, we provide Notes and Com-
ments to give the student additional insights about the methods presented in that 
section. These insights include comments on the limitations of the presented meth-
ods, recommendations for applications, and other matters. Additionally, margin 
notes are used throughout the textbook to provide additional insights and tips re-
lated to the specific material being discussed.

● Analytics in Action: Each chapter contains an Analytics in Action article. These 
articles present interesting examples of the use of business analytics in practice. 
The examples are drawn from many different organizations in a variety of areas 
including healthcare, finance, manufacturing, marketing, and others.

● WEBfiles: All data sets used as examples and in student exercises are also provided 
online as files available for download by the student. The names of the WEBfiles 
are called out in margin notes throughout the textbook.

● Problems and Cases: With the exception of Chapter 1, each chapter contains more 
than 20 problems to help the student master the material presented in that chapter. 
The problems vary in difficulty and most relate to specific examples of the use of 
business analytics in practice. Answers to even-numbered problems are provided 
in an online supplement for student access. With the exception of  Chapter 1, each 
chapter also includes an in-depth case study that connects many of the different 
methods introduced in the chapter. The case studies are designed to be more open-
ended than the chapter problems, but enough detail is provided to give the student 
some direction in solving the cases.
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2 Chapter 1 Introduction

You apply for a loan for the first time. How does the bank assess the riskiness of the loan 
it might make to you? How does Amazon.com know which books and other products to 
recommend to you when you log in to their Web site? How do airlines determine what price 
to quote to you when you are shopping for a plane ticket? How can doctors better diagnose 
and treat you when you are ill or injured?

Even though you are applying for a loan for the first time, millions of people around the 
world have applied for loans. Many of these loan recipients have paid back their loans in 
full and on time, but some of them have not. The bank wants to know whether you are more 
like those who have paid back their loans or more like those who defaulted. By comparing 
your credit history, financial situation, and other factors to the vast database of previous 
loan recipients, the bank can effectively assess how likely you are to default on a loan.

Similarly, Amazon.com has access to millions of previous purchases made by custom-
ers on its Web site. Amazon.com examines your previous purchases, the products you have 
viewed, and any product recommendations you have provided. Amazon.com then searches 
through its huge database for customers who are similar to you in terms of product pur-
chases, recommendations, and interests. Once similar customers have been identified, their 
purchases form the basis of the recommendations given to you.

Prices for airline tickets are frequently updated. The price quoted to you for a flight 
between New York and San Francisco today could be very different from the price quoted 
tomorrow. These changes happen because airlines use a pricing strategy known as revenue 
management. Revenue management works by examining vast amounts of data on past air-
line customer purchases and using these data to forecast future purchases. These forecasts 
are then fed into sophisticated optimization algorithms that determine the optimal price 
to charge for a particular flight and when to change that price. Revenue management has 
resulted in substantial increases in airline revenues.

Finally, consider the case of being evaluated by a doctor for a potentially serious 
medical issue. Hundreds of medical papers may describe research studies done on patients 
facing similar diagnoses and thousands of data points exist on their outcomes. However, 
it is extremely unlikely that your doctor has read every one of these research papers or is 
aware of all previous patient outcomes. Instead of relying only on her medical training and 
knowledge gained from her limited set of previous patients, wouldn’t it be better for your 
doctor to have access to the expertise and patient history of thousands of doctors around 
the world?

In 2007, a group of IBM computer scientists initiated a project to develop a new deci-
sion technology to help in answering these types of questions. That technology is called 
Watson, named after the founder of IBM, Thomas J. Watson. The team at IBM focused on 
one aim: how the vast amounts of data now available on the Internet can be used to make 
more data-driven, smarter decisions.

Watson became a household name in 2011, when it famously won the television game 
show, Jeopardy! Since that proof of concept in 2011, IBM has reached agreements with 
the health insurance provider WellPoint, the financial services company Citibank, and 
Memorial Sloan-Kettering Cancer Center to apply Watson to the decision problems that 
they face.

Watson is a system of computing hardware, high-speed data processing, and analytical 
algorithms that are combined to make data-based recommendations. As more and more 
data are collected, Watson has the capability to learn over time. In simple terms, accord-
ing to IBM, Watson gathers hundreds of thousands of possible solutions from a huge data 
bank, evaluates them using analytical techniques, and proposes only the best solutions for 
consideration. Watson provides not just a single solution, but a range of good solutions with 
a confidence level for each.

For example, at WellPoint’s Virginia data center, to the delight of doctors and patients, 
Watson is already being used to speed up the approval of medical procedures. Citibank is 
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 Chapter 1 Introduction 3

beginning to explore how to use Watson to better serve its customers, and Sloan-Kettering 
is launching a pilot study to assess the effectiveness of Watson in assisting with the diag-
nosis and treatment of patients.1

This book is concerned with data-driven decision making and the use of analytical 
approaches in the decision-making process. Three developments spurred recent explo-
sive growth in the use of analytical methods in business applications. First, technological 
advances, such as improved point-of-sale scanner technology and the collection of data 
through e-commerce, Internet social networks, and data generated from personal electronic 
devices, produce incredible amounts of data for businesses. Naturally, businesses want to 
use these data to improve the efficiency and profitability of their operations, better under-
stand their customers, price their products more effectively, and gain a competitive advan-
tage. Second, ongoing research has resulted in numerous methodological developments, 
including advances in computational approaches to effectively handle and explore massive 
amounts of data, faster algorithms for optimization and simulation, and more effective 
approaches for visualizing data. Third, these methodological developments were paired 
with an explosion in computing power and storage capability. Better computing hardware, 
parallel computing, and, more recently, cloud computing (the remote use of hardware and 
software over the Internet) have enabled businesses to solve big problems faster and more 
accurately than ever before.

In summary, the availability of massive amounts of data, improvements in analytic 
methodologies, and substantial increases in computing power have all come together to 
result in a dramatic upsurge in the use of analytical methods in business and a reliance on 
the  discipline that is the focus of this text: business analytics. Figure 1.1, a graph generated 
by Google Trends, displays the search volume for the word analytics from 2004 to 2013 
(projected) on a percentage basis from the peak. The figure clearly illustrates the recent 
increase in interest in analytics.

Business analytics is a crucial area of study for students looking to enhance their em-
ployment prospects. By 2018, it is predicted that there will be a shortage of more than 
1.5  million business managers with adequate training in analytics in the United States 

1“IBM’s Watson Is Learning Its Way to Saving Lives,” Fastcompany Web site, December 8, 2012.

FIGURE 1.1   GOOGLE TRENDS GRAPH OF SEARCHES ON THE TERM AnAlytics

The number 100 represents the peak search volume

2005

22

44

66

88

110

2007 2009 2011 2013

Interest over time

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4 Chapter 1 Introduction

alone.2 As stated in the Preface, the purpose of this text is to provide students with a sound 
conceptual understanding of the role that business analytics plays in the decision-making 
process. To reinforce the applications orientation of the text and to provide a better under-
standing of the variety of applications in which analytical methods have been used suc-
cessfully, Analytics in Action articles are presented throughout the book. Each Analytics 
in Action article summarizes an application of analytical methods in practice. For example, 
the first Analytics in Action, Procter & Gamble Uses Business Analytics to Redesign its 
supply chain (later in this chapter) describes how analytics was used to drive efficiency in 
Procter & Gamble’s North American supply chain.

Decision Making
It is the responsibility of managers to plan, coordinate, organize, and lead their organiza-
tions to better performance. Ultimately, managers’ responsibilities require that they make 
strategic, tactical, or operational decisions. Strategic decisions involve higher-level issues 
concerned with the overall direction of the organization; these decisions define the orga-
nization’s overall goals and aspirations for the future. Strategic decisions are usually the 
domain of higher-level executives and have a time horizon of three to five years. Tactical 
decisions concern how the organization should achieve the goals and objectives set by its 
strategy, and they are usually the responsibility of midlevel management. Tactical decisions 
usually span a year and thus are revisited annually or even every six months. Operational 
decisions affect how the firm is run from day to day; they are the domain of operations 
managers, who are the closest to the customer.

Consider the case of the Thoroughbred Running Company (TRC). Historically, TRC 
had been a catalog-based retail seller of running shoes and apparel. TRC sales revenue 
grew quickly as it changed its emphasis from catalog-based sales to Internet-based sales. 
Recently, TRC decided that it should also establish retail stores in the malls and downtown 
areas of major cities. This is a strategic decision that will take the firm in a new direc-
tion that it hopes will complement its Internet-based strategy. TRC middle managers will 
therefore have to make a variety of tactical decisions in support of this strategic decision, 
including how many new stores to open this year, where to open these new stores, how 
many distribution centers will be needed to support the new stores, and where to locate 
these distribution centers. Operations managers in the stores will need to make day-to-day 
decisions regarding, for instance, how many pairs of each model and size of shoes to order 
from the distribution centers and how to schedule their sales personnel.

Regardless of the level within the firm, decision making can be defined as the follow-
ing process:

1. Identify and define the problem
2. Determine the criteria that will be used to evaluate alternative solutions
3. Determine the set of alternative solutions
4. Evaluate the alternatives
5. Choose an alternative

Step 1 of decision making, identifying and defining the problem, is the most critical. Only 
if the problem is well-defined, with clear metrics of success or failure (step 2), can a proper 
approach for solving the problem (steps 3 and 4) be devised. Decision making concludes 
with the choice of an alternative (step 5).

1.1

if i were given one hour 
to save the planet, i would 
spend 59 minutes defining 
the problem and one minute 
resolving it.

—Albert Einstein

2J. Manyika et al., “Big Data: The Next Frontier for Innovation, Competition and Productivity,” McKinsey Global Institute 
Report, 2011.
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There are a number of approaches to making decisions: tradition (“We’ve always 
done it this way”), intuition (“gut feeling”), and rules of thumb (“As the restaurant owner, 
I schedule twice the number of waiters and cooks on holidays”). The power of each of 
these approaches should not be underestimated. Managerial experience and intuition are 
valuable inputs to making decisions, but what if relevant data were available to help us 
make more informed decisions? With the vast amounts of data now generated and stored 
electronically, it is estimated that the amount of data stored by businesses more than 
doubles every two years. How can managers convert these data into knowledge that they 
can use to be more efficient and effective in managing their businesses?

Business Analytics Defined
What makes decision making difficult and challenging? Uncertainty is probably the number 
one challenge. If we knew how much the demand will be for our product, we could do a 
much better job of planning and scheduling production. If we knew exactly how long each 
step in a project will take to be completed, we could better predict the project’s cost and 
completion date. If we knew how stocks will perform, investing would be a lot easier.

Another factor that makes decision making difficult is that we often face such an enor-
mous number of alternatives that we cannot evaluate them all. What is the best combina-
tion of stocks to help me meet my financial objectives? What is the best product line for a 
company that wants to maximize its market share? How should an airline price its tickets 
so as to maximize revenue?

Business analytics is the scientific process of transforming data into insight for making 
better decisions.3 Business analytics is used for data-driven or fact-based decision making, 
which is often seen as more objective than other alternatives for decision making.

As we shall see, the tools of business analytics can aid decision making by creating 
 insights from data, by improving our ability to more accurately forecast for planning, by 
helping us quantify risk, and by yielding better alternatives through analysis and opti-
mization. Indeed, a recent study based on a large sample of firms that was conducted by 
researchers at MIT’s Sloan School of Management and the University of Pennsylvania, 
concluded that firms guided by data-driven decision making have higher productivity and 
market value and increased output and profitability.4

A Categorization of Analytical Methods 
and Models
Business analytics can involve anything from simple reports to the most advanced optimi-
zation techniques (methods for finding the best course of action). Analytics is generally 
thought to comprise three broad categories of techniques: descriptive analytics, predictive 
analytics, and prescriptive analytics.

Descriptive Analytics
Descriptive analytics encompasses the set of techniques that describes what has happened 
in the past. Examples are data queries, reports, descriptive statistics, data visualization 

1.2

some firms and industries 
use the simpler term, 
analytics. Analytics is often 
thought of as a broader 
 category than business 
analytics,  encompassing 
the use of analytical 
techniques in the sciences 
and engineering as well. 
in this text, we use business 
analytics and analytics 
synonymously.

1.3

3 We adopt the definition of analytics developed by the Institute for Operations Research and the Management Sciences 
(INFORMS).
4E. Brynjolfsson, L. M. Hitt, and H. H. Kim, “Strength in Numbers: How Does Data-Driven Decisionmaking  Affect Firm Perfor-
mance?” (April 18, 2013). Available at SSRN http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1819486.
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6 Chapter 1 Introduction

including data dashboards, some data-mining techniques, and basic what-if spreadsheet 
models.

A data query is a request for information with certain characteristics from a database. 
For example, a query to a manufacturing plant’s database might be for all records of ship-
ments to a particular distribution center during the month of March. This query provides 
descriptive information about these shipments: the number of shipments, how much was in-
cluded in each shipment, the date each shipment was sent, and so on. A report summarizing 
relevant historical information for management might be conveyed by the use of descriptive 
statistics (means, measures of variation, etc.) and data visualization tools (tables, charts, and 
maps). Simple descriptive statistics and data visualization techniques can be used to find 
patterns or relationships in a large database.

Data dashboards are collections of tables, charts, maps, and summary statistics that 
are updated as new data become available. Dashboards are used to help management moni-
tor specific aspects of the company’s performance related to their decision-making respon-
sibilities. For corporate-level managers, daily data dashboards might summarize sales by 
region, current inventory levels, and other company-wide metrics; front-line managers may 
view dashboards that contain metrics related to staffing levels, local inventory levels, and 
short-term sales forecasts.

Predictive Analytics
Predictive analytics consists of techniques that use models constructed from past data to 
predict the future or ascertain the impact of one variable on another. For example, past data 
on product sales may be used to construct a mathematical model to predict future sales, 
which can factor in the product’s growth trajectory and seasonality based on past patterns. 
A packaged food manufacturer may use point-of-sale scanner data from retail outlets to 
help in estimating the lift in unit sales due to coupons or sales events. Survey data and past 
purchase behavior may be used to help predict the market share of a new product. All of 
these are applications of predictive analytics.

Linear regression, time series analysis, some data-mining techniques, and simulation, 
often referred to as risk analysis, all fall under the banner of predictive analytics. We 
discuss all of these techniques in greater detail later in this text.

Data mining, techniques used to find patterns or relationships among elements of the 
data in a large database, is often used in predictive analytics. For example, a large grocery 
store chain might be interested in developing a new targeted marketing campaign that of-
fers a discount coupon on potato chips. By studying historical point-of-sale data, the store 
may be able to use data mining to predict which customers are the most likely to respond 
to an offer on discounted chips by purchasing higher-margin items such as beer or soft 
drinks in addition to the chips, thus increasing the store’s overall revenue.

Simulation involves the use of probability and statistics to construct a computer model 
to study the impact of uncertainty on a decision. For example, banks often use simulation to 
model investment and default risk in order to stress test financial models. Simulation is also 
often used in the pharmaceutical industry to assess the risk of introducing a new drug.

Prescriptive Analytics
Prescriptive analytics differ from descriptive or predictive analytics in that prescriptive 
 analytics indicate a best course of action to take; that is, the output of a prescriptive model 
is a best decision. The airline industry’s use of revenue management is an example of a 
prescriptive analytics. Airlines use past purchasing data as inputs into a model that recom-
mends the best pricing strategy across all flights for maximizing revenue.

Other examples of prescriptive analytics are portfolio models in finance, supply net-
work design models in operations, and price markdown models in retailing. Portfolio 

Appendix B at the end of 
this book describes how 
to use Microsoft Access to 
conduct data queries. 
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models use historical investment return data to determine the mix of investments that 
yield the highest expected return while controlling or limiting exposure to risk. Sup-
ply network design models provide the cost-minimizing plant and distribution center 
locations subject to meeting the customer service requirements. Given historical data, 
retail price markdown models yield revenue-maximizing discount levels and the timing 
of discount offers when goods have not sold as planned. All of these models are known 
as optimization models, that is, models that give the best decision subject to constraints 
of the situation.

Another type of modeling in the prescriptive analytics category is simulation 
 optimization, which combines the use of probability and statistics to model uncertainty 
with optimization techniques to find good decisions in highly complex and highly un-
certain settings. Finally, the techniques of decision analysis can be used to develop an 
optimal strategy when a decision maker is faced with several decision alternatives and 
an uncertain set of future events. Decision analysis also employs utility theory, which 
assigns values to outcomes based on the decision maker’s attitude toward risk, loss, and 
other factors.

In this text we cover all three areas of business analytics: descriptive, predictive, and 
prescriptive. Table 1.1 shows how the chapters cover the three categories.

 1.3 A Categorization of Analytical Methods and Models 7

Consumer goods giant Procter & Gamble (P&G), the 
maker of such well-known brands as Tide, Olay, Crest, 
Bounty, and Pampers, sells its products in over 180 
countries around the world. Supply chain coordination 
and efficiency are critical to the company’s profitabil-
ity. After many years of acquisitions and growth, P&G 

embarked on a effort known as Strengthening Global 
 Effectiveness. A major piece of that effort was the North 
American Supply Chain Study, whose purpose was to 
make the supply chain in North America as efficient as 
possible, while ensuring that customer service require-
ments were met.

A team of P&G analysts and managers partnered 
with a group of analytics faculty at the University of 
Cincinnati to create a system to help managers redesign 

PROctER & GAMBlE UsEs BUsinEss AnAlytics tO REDEsiGn its sUPPly cHAin5

ANALYTICS  in  ACTION

5J. Camm, T. Chorman, F. Dill, J. Evans, D. Sweeney, and G. Wegryn, 
“Blending OR/MS, Judgment and GIS: Restructuring P&G’s Supply 
Chain,” Interfaces 27, no. 1 (1997): 83–97.

Chapter Title Descriptive Predictive Prescriptive
 1 Introduction ● ● ●

 2 Descriptive Statistics ●

 3 Data Visualization ●

 4 Linear Regression ● ●

 5 Time Series Analysis & Forecasting ●

 6 Data Mining ● ●

 7 Spreadsheet Models ●

 8 Linear Optimization Models ●

 9 Integer Linear Optimization Models ●

10 Nonlinear Optimization Models ●

11 Monte Carlo Simulation ● ●

12 Decision Analysis ●

TABLE 1.1  COVERAGE OF BUSINESS ANALYTICS TOPICS IN THIS TEXT
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8 Chapter 1 Introduction

Big Data
Like the explosion of interest in analytics, interest in what is known as big data has recently 
increased dramatically. Big data is simply a set of data that cannot be managed, processed, 
or analyzed with commonly available software in a reasonable amount of time. Walmart 
handles over one million purchase transactions per hour. Facebook processes more than 
250 million picture uploads per day. Five billion cell-phone owners around the world gen-
erate vast amounts of data by calling, texting, tweeting and browsing the web on a daily 
basis.6 As Google CEO Eric Schmidt has noted,7 the amount of data currently created every 
48 hours is equivalent to the entire amount of data created from the dawn of civilization 
until the year 2003. Perhaps it is not surprising that 90 percent of the data in the world today 
has been created in the last two years.8

Businesses are interested in understanding and using data to gain a competitive ad-
vantage. Although big data represents opportunities, it also presents analytical challenges 
from a processing point of view and consequently has itself led to an increase in the use of 
analytics. More companies are hiring data scientists who know how to process and analyze 
massive amounts of data. However, it is important to understand that in some sense big 
data issues are a subset of analytics and that many very valuable applications of analytics 
do not involve big data.

1.4

8“Bringing Big Data to the Enterprise,” IBM Website. Available at http://www-01.ibm.com/software/data/bigdata/, 
 retrieved December 1, 2012.

6 SAS White Paper, “Big Data Meets Big Data Analytics,” SAS Institute, 2012.
7E. Schmidt, Panel discussion at Technomy Conference, Lake Tahoe, CA, August 4, 2010.

the supply effort in North America. The fundamental 
questions to be answered were: (1) Which plants should 
make which product families? (2) Where should the dis-
tribution centers be located? (3) Which plants should 
serve which distribution centers? (4) Which custom-
ers should be served by each distribution center? The 
team’s approach utilized all three categories of business 
analytics: descriptive, predictive, and prescriptive.

At the start of the study, data had to be collected 
from all aspects of the supply chain. These included 
demand by product family, fixed and variable pro-
duction costs by plant, and freight costs and handling 
charges at the distribution centers. Data queries and 
descriptive statistics were utilized to acquire and bet-
ter understand the current supply chain data. Data vi-
sualization, in the form of a geographic information 
system, allowed the proposed solutions to be displayed 
on a map for more intuitive interpretation by manage-
ment. Because the supply chain had to be redesigned 
for the future, predictive analytics was used to fore-

cast product family demand by three-digit zip code for 
ten years into the future. This future demand was then 
input, along with projected freight and other relevant 
costs, into an interactive optimization model, that min-
imized cost subject to service constraints. The suite of 
analytical models was aggregated into a single system 
that could be run quickly on a laptop computer. P&G 
product category managers made over a thousand runs 
of the system before reaching consensus on a small 
set of alternative designs. Each proposed design in this 
selected set was then subjected to a risk analysis using 
computer simulation, ultimately leading to a single go-
forward design.

The chosen redesign of the supply chain was imple-
mented over time and led to a documented savings in ex-
cess of $250 million per year in P&G’s North American 
supply chain. The system of models was later utilized 
to streamline the supply chains in Europe and Asia, and 
P&G has become a world leader in the use of analytics 
in supply chain management.
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Business Analytics in Practice
Business analytics involves tools as simple as reports and graphs, as well as some that are 
as sophisticated as optimization, data mining, and simulation. In practice, companies that 
apply analytics often follow a trajectory similar to that shown in Figure 1.2. Organizations 
start with basic analytics in the lower left. As they realize the advantages of these analytic 
techniques, they often progress to more sophisticated techniques in an effort to reap the 
 derived competitive advantage. Predictive and prescriptive analytics are sometimes there-
fore referred to as advanced analytics. Not all companies reach that level of usage, but 
those that embrace analytics as a competitive strategy often do.

Analytics has been applied in virtually all sectors of business and government. Organi-
zations such as Procter & Gamble, IBM, UPS, Netflix, Amazon.com, Google, the Internal 
Revenue Service, and General Electric have embraced analytics to solve important prob-
lems or to achieve competitive advantage. In this section, we briefly discuss some of the 
types of applications of analytics by application area.

Financial Analytics
Applications of analytics in finance are numerous and pervasive. Predictive models are used 
to forecast future financial performance, to assess the risk of investment portfolios and proj-
ects, and to construct financial instruments such as derivatives. Prescriptive models are used 
to construct optimal portfolios of investments, to allocate assets, and to create optimal capital 
budgeting plans. For example, GE Asset Management uses optimization models to decide 
how to invest its own cash received from insurance policies and other financial products, as 
well as the cash of its clients such as Genworth Financial. The estimated benefit from the 
optimization models was $75 million over a five-year period.9 Simulation is also often used 
to assess risk in the financial sector; one example is the deployment by Hypo Real Estate 
International of simulation models to successfully manage commercial real estate risk.10
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9 L. C. Chalermkraivuth et al., “GE Asset Management, Genworth Financial, and GE Insurance Use a Sequential-Linear 
 Programming Algorithm to Optimize Portfolios,” Interfaces 35, no. 5 (September–October 2005): 370–80.
10Y. Jafry, C. Marrison, and U. Umkehrer-Neudeck, “Hypo International Strengthens Risk Management with a Large-Scale, 
Secure Spreadsheet-Management Framework,” Interfaces 38, no. 4 (July–August 2008): 281–88.
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FIGURE 1.2   THE SPECTRUM OF BUSINESS ANALYTICS

source: Adapted from SAS.
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